11.1. Примеры конструктивно-технологических решений
   Несущие части
самолета (крыло, горизонтальное и вертикальное оперение) в
конструктивно-силовом отношении представляют собой тонкостенную пространственную балку, способную воспринимать действующие на нее
внешние нагрузки: местную воздушную нагрузку, распределенные и сосредоточенные массовые силы - и
передавать их на опору (фюзеляж) посредством внутренних силовых факторов: перерезывающих сил, изгибающих и
крутящих моментов. Отметим здесь, что в отличие от внутренней перерезывающей силы соответствующая ей внешняя сила называется
поперечной.
   "Тонкая" обшивка 1 подкреплена продольными элементами - стрингерами 6 и поперечными элементами - нервюрами 4.    Нервюры являются основными элементами, обеспечивающими форму крыла заданного профиля.    Усиленные (силовые) нервюры установлены в местах узлов навески элерона и закрылка. Усиленные нервюры располагаются также в местах установки на крыле стоек шасси, пилонов двигателей и т. д. Назначение силовых нервюр - передать (распределить) на тонкостенные элементы крыла (и прежде всего на обшивку и продольные стенки) большие сосредоточенные силы, прикладываемые к нервюрам в узлах навески закрылков, элеронов и других агрегатов.    Усиленные нервюры, как и обычные (нормальные) нервюры, работают на изгиб в своей плоскости. Конструктивно они могут быть выполнены как балки (с поясами, работающими на растяжение-сжатие (на нормальные напряжения), и стенкой, работающей на сдвиг) или как фермы.    Лонжерон 9 воспринимает поперечную силу стенкой 3, работающей на сдвиг (от внутренней перерезывающей силы), и изгибающий момент поясами (полками) 2, работающими на растяжение-сжатие.    Замкнутый контур, воспринимающий кручение, образован обшивкой на носке крыла 5 и стенкой лонжерона 3 (первый контур), стенкой лонжерона 3, верхней обшивкой 13, специальной задней стенкой 12 и нижней обшивкой 10 (второй контур).    Стенка 12, не имеющая мощных поясов, работает на сдвиг и способна передавать часть перерезывающей силы, действующей на крыло.    Для передачи нагрузок с крыла на фюзеляж служит моментный узел 8 на лонжероне 9 и шарнирный (безмоментный узел) 11 на стенке 12. Усиленная бортовая нервюра 7 "снимает" крутящий момент с замкнутого тонкостенного контура и через узлы 8 и 11 передает на фюзеляж.
Р1 + Р2 = Q; NH = Мизг; Р3В = Мкр.
   Помня об условности понятий "внешняя нагрузка" и "опорная реакция", можно рассматривать силы Р1,
Р2 и Р3 как нагружающие крыло (см. рис. 11.1) сосредоточенные силы, которые с помощью усиленной
бортовой нервюры 7, лонжерона 9, стенки 12 и далее с помощью стрингеров и нормальных нервюр "распределяются" по обшивке и
уравновешиваются распределенной аэродинамической и массовой нагрузкой.
   Относительная масса фюзеляжа в среднем mф=mф/m0=0,08 ¸0,12, что составляет 30-40% массы конструкции планера самолета.    Пример простейшей конструкции фюзеляжа приведен на рис. 11.3.    Стрингеры 2 подкрепляют обшивку фюзеляжа в продольном, а обычные (нормальные) шпангоуты 4 - в поперечном направлении, обеспечивая необходимую форму его обводов. Усиленные (силовые) шпангоуты устанавливаются в конструкции фюзеляжа в местах стыковки с фюзеляжем крыла (шпангоуты 1 и 3), горизонтального оперения, вертикального оперения, а также в других местах, где к конструкции фюзеляжа прикладываются большие сосредоточенные силы (от оборудования, контейнеров с грузами, шасси, двигателей и т. д.).    На силовых шпангоутах имеются узлы, к которым прикладываются сосредоточенные силы.    Усиленные шпангоуты, как и обычные (нормальные) шпангоуты, в силовом отношении представляют плоскую раму, работающую в своей плоскости на изгиб, сдвиг, растяжение и сжатие.
   Конфигурация и размеры поясов и стенок (рис. 11.4) выбираются в соответствии с действующими нагрузками для обеспечения необходимой прочности и жесткости. Так, размеры поясов и стенок нормальных кольцевых шпангоутов 1 и 4 будут меньше, чем соответствующие размеры силового кольцевого шпангоута 3, к которому крепится лонжерон киля. При прочих равных условиях жесткость глухого шпангоута 2 (шпангоута со сплошной стенкой) будет, естественно, больше, чем жесткость кольцевого шпангоута. Однако по условиям компоновки установка глухих шпангоутов во многих случаях невозможна.    Поперечные нагрузки на фюзеляж передаются сводами обшивки (рис. 11.5), в которой возникают касательные (сдвиговые) напряжения, "текущие" по контуру сечения обшивки и своими проекциями на соответствующие направления формирующие перерезывающие силы в поперечных сечениях фюзеляжа. Так, в верхнем и нижнем сводах обшивки возникают перерезывающие силы от внешних нагрузок на фюзеляж, действующих в горизонтальной плоскости, например от сил на вертикальном оперении самолета. В боковых сводах обшивки возникают перерезывающие силы от внешних нагрузок, действующих на фюзеляж в вертикальной плоскости, например от сил на горизонтальном оперении самолета.
   Крутящий момент воспринимается замкнутым контуром обшивки фюзеляжа.    Конструкция мотогондол, гондол для уборки шасси на крыле и других ненесущих частей самолета аналогична конструкции фюзеляжа.    Промышленность предоставляет конструкторам широкий спектр полуфабрикатов и технологических процессов, позволяющих создавать тонкостенные конструкции.    Из плоских листовых заготовок методами гибки, прокатки, штамповки, обтяжки без нагрева (холодная обработка) или с нагревом (горячая обработка) ведется формообразование обшивок, стрингеров (гнутые стрингеры), стенок лонжеронов, стенок усиленных нервюр и шпангоутов или целиком нормальных нервюр и шпангоутов.    Прессованные профили различного поперечного сечения используются для изготовления стрингеров, полок (поясов) лонжеронов, нервюр и шпангоутов.
Различными методами точного литья и горячей штамповки получают не только отдельные простые монолитные элементы конструкции типа узлов навески рулей, стыковых узлов, но и крупногабаритные сложнофасонные объемные элементы типа каркасов остекления кабины экипажа, силовых нервюр.    Монолитная (цельноштампованная) центральная часть (находящаяся между лонжероном и задней стенкой) силовой нервюры (рис. 11.6) наряду с мощными поясами 1 имеет тонкую стенку 2 с окантованными отверстиями облегчения 3 и высокие тонкие ребра жесткости (стойки) 4 и требует после штамповки минимальной механической обработки только по поверхностям стыковки с обшивкой, стенкой лонжерона и задней стенкой.
   Различные процессы формообразования в сочетании с термической, термохимической, термомеханической обработкой и образованием на поверхности элементов конструкции защитных покрытий позволяют получить необходимые физико-механические свойства материала конструкции и защитить ее от неблагоприятных воздействий внешней среды.    Процессы деформирования поверхностных слоев материала элементов конструкции (например, с помощью дробеструйной обработки - бомбардировки поверхности детали потоком дробинок, летящих с большой скоростью) за счет воздействия на распределение дислокаций в материале обеспечивают повышение усталостной прочности отдельных элементов конструкции, например монолитных панелей крыла.    Для соединения отдельных элементов конструкции при сборке применяются заклепки, болтовые соединения (механический крепеж), сварка, пайка, склейка или их комбинации.    Клеесварные или клееклепаные швы значительно упрощают герметизацию конструкции.
   Соты резко увеличивают несущую способность тонких обшивок при сжатии, предотвращая местную и общую потерю устойчивости , что позволяет сократить число продольных и поперечных подкрепляющих элементов.    Таким образом, выбор тех или иных конструктивно-технологических решений, с одной стороны, зависит от конструктивно-силовой схемы агрегата, определяющей, в основном, его прочность и жесткость, а с другой - оказывает существенное влияние на выбор конструктивно-силовой схемы.
|